3.3.35 \(\int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx\) [235]

3.3.35.1 Optimal result
3.3.35.2 Mathematica [C] (verified)
3.3.35.3 Rubi [A] (verified)
3.3.35.4 Maple [B] (verified)
3.3.35.5 Fricas [C] (verification not implemented)
3.3.35.6 Sympy [F(-1)]
3.3.35.7 Maxima [F(-2)]
3.3.35.8 Giac [F]
3.3.35.9 Mupad [F(-1)]

3.3.35.1 Optimal result

Integrand size = 28, antiderivative size = 152 \[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=-\frac {14 e^6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 e^5 \sqrt {e \sec (c+d x)} \sin (c+d x)}{5 a^2 d}+\frac {14 e^3 (e \sec (c+d x))^{5/2} \sin (c+d x)}{15 a^2 d}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )} \]

output
14/15*e^3*(e*sec(d*x+c))^(5/2)*sin(d*x+c)/a^2/d-14/5*e^6*(cos(1/2*d*x+1/2* 
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d 
/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)+14/5*e^5*sin(d*x+c)*(e*sec(d*x+c))^ 
(1/2)/a^2/d-4/3*I*e^2*(e*sec(d*x+c))^(7/2)/d/(a^2+I*a^2*tan(d*x+c))
 
3.3.35.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.90 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.81 \[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=\frac {2 i e^5 e^{i (c+d x)} \left (-47-56 e^{2 i (c+d x)}-21 e^{4 i (c+d x)}+7 \left (1+e^{2 i (c+d x)}\right )^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sqrt {e \sec (c+d x)}}{15 a^2 d \left (1+e^{2 i (c+d x)}\right )^2} \]

input
Integrate[(e*Sec[c + d*x])^(11/2)/(a + I*a*Tan[c + d*x])^2,x]
 
output
(((2*I)/15)*e^5*E^(I*(c + d*x))*(-47 - 56*E^((2*I)*(c + d*x)) - 21*E^((4*I 
)*(c + d*x)) + 7*(1 + E^((2*I)*(c + d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/ 
4, 7/4, -E^((2*I)*(c + d*x))])*Sqrt[e*Sec[c + d*x]])/(a^2*d*(1 + E^((2*I)* 
(c + d*x)))^2)
 
3.3.35.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {3042, 3981, 3042, 4255, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2}dx\)

\(\Big \downarrow \) 3981

\(\displaystyle \frac {7 e^2 \int (e \sec (c+d x))^{7/2}dx}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 e^2 \int \left (e \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}dx}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \int (e \sec (c+d x))^{3/2}dx+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \int \left (e \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \left (\frac {2 e \sin (c+d x) \sqrt {e \sec (c+d x)}}{d}-e^2 \int \frac {1}{\sqrt {e \sec (c+d x)}}dx\right )+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \left (\frac {2 e \sin (c+d x) \sqrt {e \sec (c+d x)}}{d}-e^2 \int \frac {1}{\sqrt {e \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \left (\frac {2 e \sin (c+d x) \sqrt {e \sec (c+d x)}}{d}-\frac {e^2 \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}\right )+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \left (\frac {2 e \sin (c+d x) \sqrt {e \sec (c+d x)}}{d}-\frac {e^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}\right )+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {7 e^2 \left (\frac {3}{5} e^2 \left (\frac {2 e \sin (c+d x) \sqrt {e \sec (c+d x)}}{d}-\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}\right )+\frac {2 e \sin (c+d x) (e \sec (c+d x))^{5/2}}{5 d}\right )}{3 a^2}-\frac {4 i e^2 (e \sec (c+d x))^{7/2}}{3 d \left (a^2+i a^2 \tan (c+d x)\right )}\)

input
Int[(e*Sec[c + d*x])^(11/2)/(a + I*a*Tan[c + d*x])^2,x]
 
output
(7*e^2*((2*e*(e*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(5*d) + (3*e^2*((-2*e^2* 
EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + ( 
2*e*Sqrt[e*Sec[c + d*x]]*Sin[c + d*x])/d))/5))/(3*a^2) - (((4*I)/3)*e^2*(e 
*Sec[c + d*x])^(7/2))/(d*(a^2 + I*a^2*Tan[c + d*x]))
 

3.3.35.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3981
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*d^2*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + 
 f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Simp[d^2*((m - 2)/(b^2*(m + 2*n))) 
Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[ 
{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] 
 && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (IntegersQ[n, m + 
1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.3.35.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 431 vs. \(2 (158 ) = 316\).

Time = 7.88 (sec) , antiderivative size = 432, normalized size of antiderivative = 2.84

method result size
default \(\frac {2 e^{5} \sqrt {e \sec \left (d x +c \right )}\, \left (21 i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )-21 i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )+42 i \cos \left (d x +c \right ) F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-42 i \cos \left (d x +c \right ) E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+21 i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-21 i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-10 i+21 \sin \left (d x +c \right )-10 i \sec \left (d x +c \right )-3 \tan \left (d x +c \right )-3 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 a^{2} d \left (\cos \left (d x +c \right )+1\right )}\) \(432\)

input
int((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
2/15*e^5/a^2/d*(e*sec(d*x+c))^(1/2)/(cos(d*x+c)+1)*(21*I*EllipticF(I*(csc( 
d*x+c)-cot(d*x+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1)) 
^(1/2)*cos(d*x+c)^2-21*I*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)*(cos(d*x+c 
)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+42*I*cos(d*x 
+c)*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*(1/(cos(d*x+c)+1))^(1/2)-42*I*cos(d*x+c)*EllipticE(I*(csc(d*x+c)-cot(d* 
x+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)+21*I*E 
llipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1 
/(cos(d*x+c)+1))^(1/2)-21*I*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I* 
(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)-10*I+21*sin(d*x+c)-10* 
I*sec(d*x+c)-3*tan(d*x+c)-3*sec(d*x+c)*tan(d*x+c))
 
3.3.35.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.12 \[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=-\frac {2 \, {\left (\sqrt {2} {\left (21 i \, e^{5} e^{\left (5 i \, d x + 5 i \, c\right )} + 56 i \, e^{5} e^{\left (3 i \, d x + 3 i \, c\right )} + 47 i \, e^{5} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + 21 \, \sqrt {2} {\left (i \, e^{5} e^{\left (4 i \, d x + 4 i \, c\right )} + 2 i \, e^{5} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, e^{5}\right )} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )\right )}}{15 \, {\left (a^{2} d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d\right )}} \]

input
integrate((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas" 
)
 
output
-2/15*(sqrt(2)*(21*I*e^5*e^(5*I*d*x + 5*I*c) + 56*I*e^5*e^(3*I*d*x + 3*I*c 
) + 47*I*e^5*e^(I*d*x + I*c))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d 
*x + 1/2*I*c) + 21*sqrt(2)*(I*e^5*e^(4*I*d*x + 4*I*c) + 2*I*e^5*e^(2*I*d*x 
 + 2*I*c) + I*e^5)*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
0, e^(I*d*x + I*c))))/(a^2*d*e^(4*I*d*x + 4*I*c) + 2*a^2*d*e^(2*I*d*x + 2* 
I*c) + a^2*d)
 
3.3.35.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((e*sec(d*x+c))**(11/2)/(a+I*a*tan(d*x+c))**2,x)
 
output
Timed out
 
3.3.35.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima" 
)
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.3.35.8 Giac [F]

\[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {11}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((e*sec(d*x+c))^(11/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")
 
output
integrate((e*sec(d*x + c))^(11/2)/(I*a*tan(d*x + c) + a)^2, x)
 
3.3.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{11/2}}{(a+i a \tan (c+d x))^2} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{11/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2} \,d x \]

input
int((e/cos(c + d*x))^(11/2)/(a + a*tan(c + d*x)*1i)^2,x)
 
output
int((e/cos(c + d*x))^(11/2)/(a + a*tan(c + d*x)*1i)^2, x)